Разные истории:
Однажды один из учеников Евклида спросил его: «А какая мне будет практическая польза от изучения геометрии?» В ответ Евклид позвал раба и, указывая на ученика, сказал: «Дай ему монету — он ищет выгоду, а не знаний!»
В Египте времен царя Птолемея I (305–283 гг. до н.э.) было два вида дорог: одни для обычного люда и другие, более короткие и удобные, — для царя и его курьеров. Решив как-то изучить геометрию, Птолемей обнаружил, что это не такое простое дело. Тогда он призвал к себе Евклида и спросил, нет ли более легкого пути для ее изучения. — В геометрии нет царских путей! — гордо ответил Евклид.
Рассказывают, что знаменитый французский математик и просветитель Жан Даламбер (1717–1783) каждый раз, когда излагал студентам собственную теорему, неизменно говорил: «А сейчас, господа, мы переходим к теореме, имя которой я имею честь носить!»
С Даламбером связана еще одна забавная история. Как-то раз он обучал математике одного крайне бестолкового, но очень знатного ученика. После нескольких безуспешных попыток растолковать неучу доказательство простой теоремы, Даламбер в отчаянии воскликнул:
— Даю вам честное слово, месье, что эта теорема верна!
Ученик расстроено ответил:
— Почему же вы мне сразу так не сказали? Ведь вы — дворянин и я — дворянин; так что вашего слова для меня вполне достаточно.
Ректору Ленинградского Университета известному геометру профессору А. Д. Александрову на стол легло заявление «Прошу принять меня в ОСПИРАНТУРУ...» В ответ он наложил резолюцию «АТКАЗАТЬ».
Есть хорошо известная задача — о мухе и двух встречных поездах. Два поезда, между которыми 200 км, мчатся со скоростью 50 км/ч навстречу друг другу по одной колее. В начальный момент времени с ветрового стекла одного из локомотивов взлетает муха и со скоростью 75 км/ч летит навстречу другому. Долетев до него, она поворачивает и летит обратно, затем опять летит ко второму локомотиву и так далее. Спрашивается, какое расстояние в итоге пролетит муха до того момента, когда оба поезда, столкнувшись, раздавят ее в лепешку? Эту задачу можно решать двумя способами: трудным, «в лоб», и легким. В первом случае, учитывая, что с каждым из поездов муха до своей нелепой гибели успеет встретиться бесконечно много раз, придется найти сумму бесконечного ряда расстояний, преодоленных мухой от одного поворота до другого. Это реально, но для получения ответа не обойтись без вычислений на бумаге и некоторого количества времени.
Легкое же решение можно проделать в уме: поезда находятся на расстоянии 200 км и сближаются с суммарной скоростью 100 км/ч. Значит, они столкнутся через 2 часа. Все это время муха находится в полете, летя со скоростью 75 км/ч. Поэтому она пролетит в итоге 150 км.